Whole-body organ-level and kidney micro-dosimetric evaluations of 64Cu-loaded HER2/ErbB2-targeted liposomal doxorubicin (64Cu-MM-302) in rodents and primates

نویسندگان

  • Daniel F Gaddy
  • Helen Lee
  • Jinzi Zheng
  • David A Jaffray
  • Thomas J Wickham
  • Bart S Hendriks
چکیده

BACKGROUND Features of the tumor microenvironment influence the efficacy of cancer nanotherapeutics. The ability to directly radiolabel nanotherapeutics offers a valuable translational tool to obtain biodistribution and tumor deposition data, testing the hypothesis that the extent of delivery predicts therapeutic outcome. In support of a first in-human clinical trial with (64)Cu-labeled HER2-targeted liposomal doxorubicin ((64)Cu-MM-302), a preclinical dosimetric analysis was performed. METHODS Whole-body biodistribution and pharmacokinetic data were obtained in mice that received (64)Cu-MM-302 and used to estimate absorbed radiation doses in normal human organs. PET/CT imaging revealed non-uniform distribution of (64)Cu signal in mouse kidneys. Kidney micro-dosimetry analysis was performed in mice and squirrel monkeys, using a physiologically based pharmacokinetic model to estimate the full dynamics of the (64)Cu signal in monkeys. RESULTS Organ-level dosimetric analysis of mice receiving (64)Cu-MM-302 indicated that the heart was the organ receiving the highest radiation absorbed dose, due to extended liposomal circulation. However, PET/CT imaging indicated that (64)Cu-MM-302 administration resulted in heterogeneous exposure in the kidney, with a focus of (64)Cu activity in the renal pelvis. This result was reproduced in primates. Kidney micro-dosimetry analysis illustrated that the renal pelvis was the maximum exposed tissue in mice and squirrel monkeys, due to the highly concentrated signal within the small renal pelvis surface area. CONCLUSIONS This study was used to select a starting clinical radiation dose of (64)Cu-MM-302 for PET/CT in patients with advanced HER2-positive breast cancer. Organ-level dosimetry and kidney micro-dosimetry results predicted that a radiation dose of 400 MBq of (64)Cu-MM-302 should be acceptable in patients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative Evaluation of Anti-HER2 Affibody Molecules Labeled with 64Cu Using NOTA and NODAGA

Imaging using affibody molecules enables discrimination between breast cancer metastases with high and low expression of HER2, making appropriate therapy selection possible. This study aimed to evaluate if the longer half-life of 64Cu (T1/2 = 12.7 h) would make 64Cu a superior nuclide compared to 68Ga for PET imaging of HER2 expression using affibody molecules. The synthetic ZHER2:S1 affibody m...

متن کامل

Cyclophosphamide-Mediated Tumor Priming for Enhanced Delivery and Antitumor Activity of HER2-Targeted Liposomal Doxorubicin (MM-302).

Given the bulky nature of nanotherapeutics relative to small molecules, it is hypothesized that effective tumor delivery and penetration are critical barriers to their clinical activity. HER2-targeted PEGylated liposomal doxorubicin (MM-302, HER2-tPLD) is an antibody-liposomal drug conjugate designed to deliver doxorubicin to HER2-overexpressing cancer cells while limiting uptake into nontarget...

متن کامل

A comparison of 111In- or 64Cu-DOTA-trastuzumab Fab fragments for imaging subcutaneous HER2-positive tumor xenografts in athymic mice using microSPECT/CT or microPET/CT

BACKGROUND Our objective was to compare 111In- or 64Cu-DOTA-trastuzumab Fab fragments for imaging small or large s.c. tumor xenografts in athymic mice that display a wide range of human epidermal growth factor receptor-2 (HER2) expression using microSPECT/CT or microPET/CT. METHODS Trastuzumab Fab were labeled with 111In or 64Cu by conjugation to 1,4,7,10-tetraazacyclododecane N, N', N'', N''...

متن کامل

Impact of tumor HER2/ERBB2 expression level on HER2-targeted liposomal doxorubicin-mediated drug delivery: multiple low-affinity interactions lead to a threshold effect.

Numerous targeted nanotherapeutics have been described for potential treatment of solid tumors. Although attention has focused on antigen selection and molecular design of these systems, there has been comparatively little study of how cellular heterogeneity influences interaction of targeted nanoparticles with tumor cells. Antigens, such as HER2/ERBB2, are heterogeneously expressed across diff...

متن کامل

Cancer Therapeutics Insights Impact of Tumor HER2/ERBB2 Expression Level on HER2- Targeted Liposomal Doxorubicin-Mediated Drug Delivery: Multiple Low-Affinity Interactions Lead to a Threshold Effect

Numerous targeted nanotherapeutics have been described for potential treatment of solid tumors. Although attention has focused on antigen selection and molecular design of these systems, there has been comparatively little study of how cellular heterogeneity influences interaction of targeted nanoparticles with tumor cells. Antigens, such as HER2/ERBB2, are heterogeneously expressed across diff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015